Minimum dimension embedding of finite metric spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding Finite Metric Spaces in Low Dimension

This paper presents novel techniques that allow the solution to several open problems regarding embedding of finite metric spaces into Lp. We focus on proving near optimal bounds on the dimension with which arbitrary metric spaces embed into Lp. The dimension of the embedding is of very high importance in particular in applications and much effort has been invested in analyzing it. However, no ...

متن کامل

Finite Metric Spaces and Their Embedding into Lebesgue Spaces

The properties of the metric topology on infinite and finite sets are analyzed. We answer whether finite metric spaces hold interest in algebraic topology, and how this result is generalized to pseudometric spaces through the Kolmogorov quotient. Embedding into Lebesgue spaces is analyzed, with special attention for Hilbert spaces, `p, and EN .

متن کامل

On Embedding of Finite Metric Spaces into Hilbert Space

Metric embedding plays an important role in a vast range of application areas such as computer vision, computational biology, machine learning, networking, statistics, and mathematical psychology, to name a few. The main criteria for the quality of an embedding is its average distortion over all pairs. A celebrated theorem of Bourgain states that every finite metric space on n points embeds in ...

متن کامل

On Minimum Metric Dimension of Circulant Networks

Let M = } ,..., , { 2 1 n v v v be an ordered set of vertices in a graph G. Then )) , ( ),..., , ( ), , ( ( 2 1 n v u d v u d v u d is called the M-coordinates of a vertex u of G. The set M is called a metric basis if the vertices of G have distinct M-coordinates. A minimum metric basis is a set M with minimum cardinality. The cardinality of a minimum metric basis of G is called minimum metric ...

متن کامل

On minimum metric dimension of honeycomb networks

A minimum metric basis is a minimum set W of vertices of a graph G(V,E) such that for every pair of vertices u and v of G, there exists a vertex w ∈ W with the condition that the length of a shortest path from u to w is different from the length of a shortest path from v to w. The honeycomb and hexagonal networks are popular mesh-derived parallel architectures. Using the duality of these networ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1986

ISSN: 0097-3165

DOI: 10.1016/0097-3165(86)90089-0