Minimum dimension embedding of finite metric spaces
نویسندگان
چکیده
منابع مشابه
Embedding Finite Metric Spaces in Low Dimension
This paper presents novel techniques that allow the solution to several open problems regarding embedding of finite metric spaces into Lp. We focus on proving near optimal bounds on the dimension with which arbitrary metric spaces embed into Lp. The dimension of the embedding is of very high importance in particular in applications and much effort has been invested in analyzing it. However, no ...
متن کاملFinite Metric Spaces and Their Embedding into Lebesgue Spaces
The properties of the metric topology on infinite and finite sets are analyzed. We answer whether finite metric spaces hold interest in algebraic topology, and how this result is generalized to pseudometric spaces through the Kolmogorov quotient. Embedding into Lebesgue spaces is analyzed, with special attention for Hilbert spaces, `p, and EN .
متن کاملOn Embedding of Finite Metric Spaces into Hilbert Space
Metric embedding plays an important role in a vast range of application areas such as computer vision, computational biology, machine learning, networking, statistics, and mathematical psychology, to name a few. The main criteria for the quality of an embedding is its average distortion over all pairs. A celebrated theorem of Bourgain states that every finite metric space on n points embeds in ...
متن کاملOn Minimum Metric Dimension of Circulant Networks
Let M = } ,..., , { 2 1 n v v v be an ordered set of vertices in a graph G. Then )) , ( ),..., , ( ), , ( ( 2 1 n v u d v u d v u d is called the M-coordinates of a vertex u of G. The set M is called a metric basis if the vertices of G have distinct M-coordinates. A minimum metric basis is a set M with minimum cardinality. The cardinality of a minimum metric basis of G is called minimum metric ...
متن کاملOn minimum metric dimension of honeycomb networks
A minimum metric basis is a minimum set W of vertices of a graph G(V,E) such that for every pair of vertices u and v of G, there exists a vertex w ∈ W with the condition that the length of a shortest path from u to w is different from the length of a shortest path from v to w. The honeycomb and hexagonal networks are popular mesh-derived parallel architectures. Using the duality of these networ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1986
ISSN: 0097-3165
DOI: 10.1016/0097-3165(86)90089-0